Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.987
Filtrar
1.
J Nepal Health Res Counc ; 21(4): 616-622, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38616592

RESUMO

BACKGROUND: Staphylococcus aureus (S.aureus) is an emerging antibiotic resistant bacterium responsible for various infections in human. Resistance to methicillin and vancomycin are of prime concern in S. aureus. The study aims to determine the minimum inhibitory concentration (MIC) of Vancomycin and evaluate the existence of mecA and vanA genes, associated with antibiotic resistance. METHODS: Clinical specimens from three Kathmandu hospitals were processed and S. aureus was identified using conventional microbiological procedures. MRSA was phenotypically identified with cefoxitin (30µg) disc diffusion, while vancomycin susceptibility was assessed using the Ezy MICTM stripes. The mecA and vanA genes were detected by polymerase chain reaction (PCR). RESULTS: Out of 266 S. aureus samples from various clinical specimen subjected for analysis, 77 (28.9%) were found methicillin-resistant (MRSA) and 10 (3.8%) were observed vancomycin-resistant (VRSA). Vancomycin resistant isolates showed a significant correlation between resistance to ampicillin, chloramphenicol, and cefoxitin. The mecA gene was found in 39 of the MRSA isolates, having 50.64% of MRSA cases, while the vanA gene was detected in 4 of the VRSA cases, constituting 40% of VRSA occurrences. CONCLUSIONS: The strains with higher vancomycin minimum inhibitory concentration values (≥ 1.5 µg/ml) displayed increased resistance rates to various antibiotics compared to strains with lower minimum inhibitory concentration values (< 1.5 µg/ml). The presence of vanA genes was strongly associated (100%) with vancomycin resistance, while the 10.3% mecA gene was identified from MRSA having resistance towards vancomycin also.


Assuntos
Infecções Estafilocócicas , Vancomicina , Humanos , Vancomicina/farmacologia , Staphylococcus aureus/genética , Cefoxitina/farmacologia , Nepal , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia
2.
Gut Microbes ; 16(1): 2337312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591915

RESUMO

Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Transplante de Microbiota Fecal , Vancomicina/farmacologia , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle
3.
ACS Infect Dis ; 10(4): 1327-1338, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38567846

RESUMO

Due to the widespread abuse of antibiotics, drug resistance in Enterococcus has been increasing. However, the speed of antibiotic discovery cannot keep pace with the acquisition of bacterial resistance. Thus, drug repurposing is a proposed strategy to solve the crises. Lusutrombopag (LP) has been approved as a thrombopoietin receptor agonist by the Food and Drug Administration. This study demonstrated that LP exhibited significant antimicrobial activities against vancomycin-resistant Enterococcus in vitro with rare resistance occurrence. Further, LP combined with tobramycin exhibited synergistic antimicrobial effects in vitro and in vivo against Enterococcus. No in vitro or in vivo detectable toxicity was observed when using LP. Mechanism studies indicated that the disrupted proton motive force may account for LP's antimicrobial activity. In summary, these results demonstrate that LP has the previously undocumented potential to serve as an antibacterial agent against refractory infections caused by Enterococcus.


Assuntos
Aminoglicosídeos , Cinamatos , Tiazóis , Enterococos Resistentes à Vancomicina , Estados Unidos , Aminoglicosídeos/farmacologia , Vancomicina/farmacologia , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Medicine (Baltimore) ; 103(16): e37860, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640320

RESUMO

Staphylococcus aureus is an important human pathogen that has a major impact on public health. The objective of the present work was to determine the prevalence and the pattern of antibiotic susceptibility in S aureus (MRSA) isolates from the King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia. The isolates were collected from different body sites of infection and the antibiotic susceptibility was confirmed on the Vitek 2 system. A total of 371 MRSA isolates from clinical samples were received over a 12-month period from January 2021 to December 2021. The results showed that infection was predominant among males (55.8%) and most of the isolates occurred in the older age groups, with a mean age of 43.7 years and an age span from <1 to 89 years old. The majority (34.5%) recovered from wound infection followed by (14.6%) from blood. We have observed peaks of MRSA infections during the autumn, especially in September and November. All MRSA isolates were resistant to Amoxicillin + clavulanic acid, Ampicillin, Imipenem, Oxacillin, Cloxacillin, and Penicillin while all isolates were sensitive to Daptomycin and Nitrofurantoin. Furthermore, Vancomycin was resistant in (0.3%) of MRSA isolates, and (2.9%) was resistant to Linezolid. The current study concluded that MRSA strains had developed resistance toward 24 tested antibiotics, including the previous effective drugs vancomycin and linezolid. Therefore, there is an urgent need for continuous review of infection control practices to prevent any further spread of resistant strains.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Masculino , Humanos , Idoso , Adulto , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Vancomicina/farmacologia , Linezolida/farmacologia , Arábia Saudita/epidemiologia , Centros de Atenção Terciária , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia
5.
Nat Commun ; 15(1): 2993, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582763

RESUMO

Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.


Assuntos
Bacteriófagos , Enterococos Resistentes à Vancomicina , Humanos , Animais , Camundongos , Bacteriófagos/fisiologia , Vancomicina/farmacologia , Modelos Animais de Doenças , Myoviridae/fisiologia , Antibacterianos/farmacologia
6.
mSystems ; 9(4): e0097123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534138

RESUMO

Small RNAs have been found to control a broad range of bacterial phenotypes including tolerance to antibiotics. Vancomycin tolerance in multidrug resistance Staphylococcus aureus is correlated with dysregulation of small RNAs although their contribution to antibiotic tolerance is poorly understood. RNA-RNA interactome profiling techniques are expanding our understanding of sRNA-mRNA interactions in bacteria; however, determining the function of these interactions for hundreds of sRNA-mRNA pairs is a major challenge. At steady-state, protein and mRNA abundances are often highly correlated and lower than expected protein abundance may indicate translational repression of an mRNA. To identify sRNA-mRNA interactions that regulate mRNA translation, we examined the correlation between gene transcript abundance, ribosome occupancy, and protein levels. We used the machine learning technique self-organizing maps (SOMs) to cluster genes with similar transcription and translation patterns and identified a cluster of mRNAs that appeared to be post-transcriptionally repressed. By integrating our clustering with sRNA-mRNA interactome data generated in vancomycin-tolerant S. aureus by RNase III-CLASH, we identified sRNAs that may be mediating translational repression. We have confirmed sRNA-dependant post-transcriptional repression of several mRNAs in this cluster. Two of these interactions are mediated by RsaOI, a sRNA that is highly upregulated by vancomycin. We demonstrate the regulation of HPr and the cell-wall autolysin Atl. These findings suggest that RsaOI coordinates carbon metabolism and cell wall turnover during vancomycin treatment. IMPORTANCE: The emergence of multidrug-resistant Staphylococcus aureus (MRSA) is a major public health concern. Current treatment is dependent on the efficacy of last-line antibiotics like vancomycin. The most common cause of vancomycin treatment failure is strains with intermediate resistance or tolerance that arise through the acqusition of a diverse repertoire of point mutations. These strains have been shown to altered small RNA (sRNA) expression in response to antibiotic treatment. Here, we have used a technique termed RNase III-CLASH to capture sRNA interactions with their target mRNAs. To understand the function of these interactions, we have looked at RNA and protein abundance for mRNAs targeted by sRNAs. Messenger RNA and protein levels are generally well correlated and we use deviations from this correlation to infer post-transcriptional regulation and the function of individual sRNA-mRNA interactions. Using this approach we identify mRNA targets of the vancomycin-induced sRNA, RsaOI, that are repressed at the translational level. We find that RsaOI represses the cell wall autolysis Atl and carbon transporter HPr suggestion a link between vancomycin treatment and suppression of cell wall turnover and carbon metabolism.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pequeno RNA não Traduzido , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Vancomicina/farmacologia , Ribonuclease III , Staphylococcus aureus Resistente à Meticilina/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Antibacterianos/farmacologia , RNA Mensageiro/genética , Bactérias/genética , Carbono
7.
Biosensors (Basel) ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534236

RESUMO

Vancomycin (VAN) is an effective antibiotic against Gram-positive bacteria and the first-line therapy to prevent and treat methicillin-resistant Staphylococcus aureus (MRSA) and severe infections. However, low concentrations of VAN can result in resistant strains. High doses of VAN can cause nephrotoxicity and ototoxicity; thus, VAN is a representative drug for which drug monitoring is recommended. Several methods have been proposed to detect VAN. Among them, lateral flow immunoassays (LFIAs) have advantages, such as simple and user-friendly operation, low sample volume requirement, and cost effectiveness. In this study, we developed an LFIA capable of rapid on-site detection such that the VAN concentration in plasma could be monitored within 20 min by a one-step detection process using whole blood without plasma separation. VAN can be detected in whole blood over a wide range of concentrations (20-10,000 ng/mL), and the LFIA reported here has a detection limit of 18 ng/mL. The applicability of the developed LFIA compared to the results of measuring VAN with a commercial enzyme-linked immunosorbent assay kit showed a satisfactory correlation (Spearman's rho, ρ = 0.891). Therefore, the developed LFIA enables rapid and wide-range VAN detection in whole blood and can aid in drug monitoring to evaluate patients' responses to treatment.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Vancomicina , Humanos , Vancomicina/farmacologia , Antibacterianos/farmacologia , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática
8.
J Med Chem ; 67(5): 3778-3794, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482826

RESUMO

It is an urgent need to tackle the global crisis of multidrug-resistant bacterial infections. We report here an innovative strategy for large-scale screening of new antibacterial agents using a whole bacteria-based DNA-encoded library (DEL) of vancomycin derivatives via peripheral modifications. A bacterial binding affinity assay was established to select the modification fragments in high-affinity compounds. The optimal resynthesized derivatives demonstrated excellently enhanced activity against various resistant bacterial strains and provided useful structures for vancomycin derivatization. This work presents the new concept in a natural product-templated DEL and in antibiotic discovery through bacterial affinity screening, which promotes the fight against drug-resistant bacteria.


Assuntos
Antibacterianos , Vancomicina , Vancomicina/farmacologia , Vancomicina/química , Antibacterianos/química , Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , DNA , Testes de Sensibilidade Microbiana
9.
Int Immunopharmacol ; 131: 111898, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513573

RESUMO

Vancomycin (VCM) is the first-line antibiotic for severe infections, but nephrotoxicity limits its use. Leonurine (Leo) has shown protective effects against kidney damage. However, the effect and mechanism of Leo on VCM nephrotoxicity remain unclear. In this study, mice and HK-2 cells exposed to VCM were treated with Leo. Biochemical and pathological analysis and fluorescence probe methods were performed to examine the role of Leo in VCM nephrotoxicity. Immunohistochemistry, q-PCR, western blot, FACS, and Autodock software were used to verify the mechanism. The present results indicate that Leo significantly alleviates VCM-induced renal injury, morphological damage, and oxidative stress. Increased intracellular and mitochondrial ROS in HK-2 cells and decreased mitochondrial numbers in mouse renal tubular epithelial cells were reversed in Leo-administrated groups. In addition, molecular docking analysis using Autodock software revealed that Leo binds to the PPARγ protein with high affinity. Mechanistic exploration indicated that Leo inhibited VCM nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α inflammation pathway. Taken together, our results indicate that the PPARγ inhibition and inflammation reactions were implicated in the VCM nephrotoxicity and provide a promising therapeutic strategy for renal injury.


Assuntos
Ácido Gálico/análogos & derivados , Insuficiência Renal , Vancomicina , Camundongos , Animais , Vancomicina/metabolismo , Vancomicina/farmacologia , Vancomicina/uso terapêutico , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , PPAR gama/metabolismo , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Rim/patologia , Insuficiência Renal/metabolismo , Inflamação/tratamento farmacológico
10.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317636

RESUMO

AIM: The poultry industry represents an important economic sector in Tunisia. This study aims to determine the antimicrobial resistance phenotypes and genotypes and virulence factors of enterococci collected from chicken caecum in Tunisia. METHODS AND RESULTS: Forty-nine composite chicken caecum samples were recovered in 49 different Tunisian farms (December 2019-March 2020). Each composite sample corresponds to six individual caecum from each farm. Composite samples were plated on Slanetz-Bartley agar both supplemented (SB-Van) and not supplemented (SB) with vancomycin and isolates were identified by matrix-assisted laser desorption/ionization time-of-flight. Antibiotic resistance and virulence genes were tested by Polymerase Chain Reaction (PCR) and sequencing and multilocus-sequence-typing of selected enterococci was performed. One hundred sixty seven enterococci of six different species were recovered. Acquired linezolid resistance was detected in 6 enterococci of 4/49 samples (8.1%): (A) four optrA-carrying Enterococcus faecalis isolates assigned to ST792, ST478, and ST968 lineages; (B) two poxtA-carrying Enterococcus faecium assigned to ST2315 and new ST2330. Plasmid typing highlighted the presence of the rep10, rep14, rep7, rep8, and pLG1 in these strains. One vancomycin-resistant E. faecium isolate (typed as ST1091) with vanA gene (included in Tn1546) was detected in SB-Van plates. The gelE, agg, esp, and hyl virulence genes were found in linezolid- and vancomycin-resistant enterococci. High resistance rates were identified in the enterococci recovered in SB plates: tetracycline [74.8%, tet(M) and tet(L) genes], erythromycin [65.9%, erm(B)], and gentamicin [37.1%, aac(6')-Ie-aph(2″)-Ia]. CONCLUSION: The detection of emerging mechanisms of resistance related to linezolid and vancomycin in the fecal enterococci of poultry farms has public health implications, and further surveillance should be carried out to control their dissemination by the food chain.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Animais , Linezolida/farmacologia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/genética , Galinhas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
11.
J Biomater Sci Polym Ed ; 35(6): 823-850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300323

RESUMO

Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.


Assuntos
Cerâmica , Grafite , Nanocompostos , Polimetil Metacrilato , Silicatos , Humanos , Ratos , Animais , Cimentos Ósseos , Vancomicina/farmacologia , Osteogênese , Teste de Materiais
12.
ACS Appl Bio Mater ; 7(3): 1888-1898, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38349328

RESUMO

Garlic-derived exosome-like nanovesicles (GELNs) could function in interspecies communication and may serve as natural therapeutics to regulate the inflammatory response or as nanocarriers to efficiently deliver specific drugs. Staphylococcus aureus (S. aureus) is able to hide within host cells to evade immune clearance and antibiotics, leading to life-threatening infections. On-site detection and efficient treatment of intracellular S. aureus infection in wounds remain challenging. Herein, we report a thermosensitive, injectable, visible GELNs-based wound dressing, Van@GELNs/F127 hydrogel (gel Van@GELNs), which is H2O2-responsive and can slowly release vancomycin into host cells forS. aureus infection visualization and treatment in wounds. GELNs show inherent antibacterial activity, which is significantly enhanced after loading vancomycin. Both GELNs and Van@GELNs have the ability to be internalized by cells, so Van@GELNs are more effective than free vancomycin in killing S. aureus in RAW 264.7 macrophages. When applied to an S. aureus-infected wound on a mouse, the colorless HRP&ABTS/Van@GELNs/F127 solution immediately changes to a green hydrogel and shows better therapeutic effect than vancomycin. Thus, direct visualization by the naked eye and effective treatment of S. aureus infection in wounds are achieved by gel Van@GELNs. We anticipate gel Van@GELNs be applied for the theranostics of S. aureus infection diseases in the clinic in the near future.


Assuntos
Exossomos , Alho , Polietilenos , Polipropilenos , Infecções Estafilocócicas , Camundongos , Animais , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Staphylococcus aureus , Peróxido de Hidrogênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Bandagens , Hidrogéis/uso terapêutico , Hidrogéis/farmacologia
13.
Microbiol Res ; 282: 127635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340572

RESUMO

Bacteria develop tolerance after transient exposure to antibiotics, and tolerance is a significant driver of resistance. The purpose of this study is to evaluate the mechanisms underlying tolerance formation in vancomycin-intermediate Staphylococcus aureus (VISA) strains. VISA strains were cultured with sub-minimum inhibitory concentrations (sub-MICs) of vancomycin. Enhanced vancomycin tolerance was observed in VISA strains with distinct genetic lineages. Western blot revealed that the VISA protein succinylation (Ksucc) levels decreased with the increase in vancomycin exposure. Importantly, Ksucc modification, vancomycin tolerance, and cell wall synthesis were simultaneously affected after deletion of SacobB, which encodes a desuccinylase in S. aureus. Several Ksucc sites were identified in MurA, and vancomycin MIC levels of murA mutant and Ksucc-simulated (MurA(K69E) and MurA(K191E)) mutants were reduced. The vancomycin MIC levels of K65-MurA(K191E) in particular decreased to 1 mg/L, converting VISA strain K65 to a vancomycin-susceptible S. aureus strain. We further demonstrated that the enzymatic activity of MurA was dependent on Ksucc modification. Our data suggested the influence of vancomycin exposure on bacterial tolerance, and protein Ksucc modification is a novel mechanism in regulating vancomycin tolerance.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Vancomicina/farmacologia , Vancomicina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Vancomicina , Regulação para Baixo , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia
14.
Am J Sports Med ; 52(4): 956-960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305039

RESUMO

BACKGROUND: Approximately 100,000 anterior cruciate ligament (ACL) reconstructions (ACLRs) occur annually in the United States, and postoperative surgical-site infection is a relatively rare but devastating complication, often leading to graft failure or septic arthritis of the knee, necessitating repeat surgery. Wrapping allografts in vancomycin-soaked gauze has been adopted as a common sterilization technique in the operating room to reduce surgical-site infection; however, identifying effective alternatives to vancomycin has not been extensively pursued. HYPOTHESIS: Tobramycin would be as effective as vancomycin in reducing the concentrations of Staphylococcus epidermidis bacteria on tendon allografts. STUDY DESIGN: Controlled laboratory study. METHODS: S. epidermidis strain ATCC 12228 was inoculated onto the human cadaveric gracilis tendon. The tendons were wrapped in sterile gauze saturated with tobramycin or vancomycin at various experimental concentrations. Bacteria remaining on the tendon were dislodged, serially diluted, and plated for colony counting. Statistical analysis was performed utilizing 2-way analysis of variance testing. Results were considered statistically significant when P < .05. RESULTS: Vancomycin (P = .0001) and tobramycin (P < .0001) reduced bacterial concentration. Tobramycin was found to produce a statistically significant reduction in bacterial concentration at concentrations as low as 0.1 mg/mL (P < .0001 and P = .01 at 10 and 20 minutes), while vancomycin produced a statistically significant reduction at a concentration as low as 2.5 mg/mL (P < .0001 at both 10 and 20 minutes). CONCLUSION: This study demonstrates that tobramycin is as effective as vancomycin in bacterial concentration reduction but can achieve this reduction level at lower doses. Further studies clarifying the biomechanical and cytotoxic effects of tobramycin on tendon tissue are indicated to solidify its use as a clinical alternative to vancomycin in ACLR. CLINICAL RELEVANCE: These results will begin establishing tobramycin as an alternative to vancomycin in ACL graft decontamination. Because of relatively frequent shortages of vancomycin, establishing tobramycin as an alternative agent is a useful option for the orthopaedic surgeon.


Assuntos
Lesões do Ligamento Cruzado Anterior , Vancomicina , Humanos , Vancomicina/farmacologia , Ligamento Cruzado Anterior/cirurgia , Tobramicina/farmacologia , Descontaminação , Lesões do Ligamento Cruzado Anterior/cirurgia , Infecção da Ferida Cirúrgica/prevenção & controle , Aloenxertos
15.
Antimicrob Agents Chemother ; 68(3): e0162123, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38364016

RESUMO

Antimicrobial resistance is emerging in clinical strains of Clostridioides difficile. Ibezapolstat (IBZ) is a DNA polymerase IIIC inhibitor that has completed phase II clinical trials. IBZ has potent in vitro activity against wild-type, susceptible strains but its effect on C. difficile strains with reduced susceptibility to metronidazole (MTZ), vancomycin (VAN), or fidaxomicin (FDX) has not been tested. The primary objective of this study was to test the antibacterial properties of IBZ against multidrug-resistant C. difficile strains. The in vitro activity, bactericidal, and time-kill activity of IBZ versus comparators were evaluated against 100 clinical strains of which 59 had reduced susceptibility to other C. difficile antibiotics. Morphologic changes against a multidrug resistance strain were visualized by light and scanning electron microscopy. The overall IBZ MIC50/90 values (µg/mL) for evaluated C. difficile strains were 4/8, compared with 2/4 for VAN, 0.5/1 for FDX, and 0.25/4 for MTZ. IBZ MIC50/90 values did not differ based on non-susceptibility to antibiotic class or number of classes to which strains were non-susceptible. IBZ bactericidal activity was similar to the minimum inhibitory concentration (MIC) and maintained in wild-type and non-susceptible strains. Time-kill assays against two laboratory wild-type and two clinical non-susceptible strains demonstrated sustained IBZ activity despite reduced killing by comparator antibiotics for IBZ and VAN non-susceptible strains. Microscopy visualized increased cell lengthening and cellular damage in multidrug-resistant strains exposed to IBZ sub-MIC concentrations. This study demonstrated the potent antibacterial activity of IBZ against a large collection of C. difficile strains including multidrug-resistant strains. This study highlights the therapeutic potential of IBZ against multidrug-resistant strains of C. difficile.


Assuntos
Anti-Infecciosos , Clostridioides difficile , Infecções por Clostridium , Nucleosídeos de Purina , Humanos , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Fidaxomicina/farmacologia , Fidaxomicina/uso terapêutico , Testes de Sensibilidade Microbiana
16.
Sci Rep ; 14(1): 4786, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413672

RESUMO

Increasing antimicrobial resistance in Enterococcus faecium necessitates the search for novel treatment agents, such as bacteriocins. In this study, we conducted an in vivo assessment of five bacteriocins, namely Lacticin Z, Lacticin Q, Garvicin KS (ABC), Aureocin A53 and Microbisporicin (NAI-107), against vanB-resistant Enterococcus faecium using a Galleria mellonella model. Our in vitro experiments demonstrated the efficacy of all five bacteriocins against vanB-resistant E. faecium with only NAI-107 demonstrating in vivo efficacy. Notably, NAI-107 exhibited efficacy across a range of tested doses, with the highest efficacy observed at a concentration of 16 µg/mL. Mortality rates in the group treated with 16 µg/mL NAI-107 were lower than those observed in the linezolid-treated group. These findings strongly suggest that NAI-107 holds promise as a potential alternative therapeutic agent for treating infections caused by resistant E. faecium and warrants further investigation.


Assuntos
Bacteriocinas , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Mariposas , Enterococos Resistentes à Vancomicina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vancomicina/farmacologia , Bacteriocinas/farmacologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Testes de Sensibilidade Microbiana
18.
Drug Dev Res ; 85(1): e22148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349268

RESUMO

The emergence of antibiotic-resistant bacterial infections is a principal threat to global health. Functionalization of nanomaterial with antibiotics is known as a useful method for increasing the effectiveness of existing antibiotics. In this study, vancomycin-functionalized ZnFe2 O4 nanocomposite (ZnFe2 O4 @Cell@APTES@Van) was synthesized, and its functional groups and particle size were characterized using Fourier-transform infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, scanning electron microscope, and transmission electron microscopy. The antibacteria activity of the synthesized nanocomposite was evaluated using minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). Cytotoxicity assay was done by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide method. Characterization analyses of synthesized nanocomposite confirmed the binding of vancomysin on the surface of ZnFe2 O4 @Cell@APTES. Nanocomposite exhibited an aggregated semi-spherical structure with hydrodynamic radii of ∼382 nm. In vitro antibacterial activity test showed that vancomycin and vancomycin functionalized ZnFe2 O4 have no antibacterial effect against E. coli. S. aureus was sensitive to vancomycin and ZnFe2 O4 @Cell@APTES@Van NPs and ZnFe2 O4 NPs did not improve vancomycin antibacterial activity against these bacteria. MRSA is resistant to vancomycin while ZnFe2 O4 @Cell@APTES@Van NPs was efficient in inhibiting MRSA growth. In summary, this study showed that attachment of vancomycin to ZnFe2 O4 NPs was increased its antibacterial activity against MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Vancomicina/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Escherichia coli
19.
Gut Microbes ; 16(1): 2310277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332701

RESUMO

Up to 40% of transplant recipients treated long-term with tacrolimus (TAC) develop post-transplant diabetes mellitus (PTDM). TAC is an important risk factor for PTDM, but is also essential for immunosuppression after transplantation. Long-term TAC treatment alters the gut microbiome, but the mechanisms of TAC-induced gut microbiota in the pathogenesis of PTDM are poorly characterized. Here, we showed that vancomycin, an inhibitor of bacterial beta-glucuronidase (GUS), prevents TAC-induced glucose disorder and insulin resistance in mice. Metagenomics shows that GUS-producing bacteria are predominant and flourish in the TAC-induced hyperglycemia mouse model, with upregulation of intestinal GUS activity. Targeted metabolomics analysis revealed that in the presence of high GUS activity, the hydrolysis of bile acid (BAs)-glucuronic conjugates is increased and most BAs are overproduced in the serum and liver, which, in turn, activates the ileal farnesoid X receptor (FXR) and suppresses GLP-1 secretion by L-cells. The GUS inhibitor vancomycin significantly eliminated GUS-producing bacteria and inhibited bacterial GUS activity and BAs levels, thereby enhancing L-cell GLP-1 secretion and preventing hyperglycemia. Our results propose a novel clinical strategy for inhibiting the bacterial GUS enzyme to prevent hyperglycemia without requiring withdrawal of TAC treatment. This strategy exerted its effect through the ileal bile acid-FXR-GLP-1 pathway.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Hiperglicemia , Camundongos , Animais , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Vancomicina/farmacologia , Imunossupressores/uso terapêutico , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Bactérias/genética , Bactérias/metabolismo , Glucuronidase/metabolismo , Glucuronidase/farmacologia , Ácidos e Sais Biliares/farmacologia , Peptídeo 1 Semelhante ao Glucagon
20.
J Mater Chem B ; 12(9): 2334-2345, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38327236

RESUMO

Intracellular bacteria often lead to chronic and recurrent infections; however, most of the known antibiotics have poor efficacy against intracellular bacteria due to their poor cell membrane penetration efficiency into the cytosol. Here, a thiol-mediated nanodrug delivery system, named Van-DM NPs, was developed to improve vancomycin's penetration efficiency and intracellular antibacterial activities. Van-DM NPs were prepared through self-assembly of vancomycin (Van) and the disulfide molecule (DM) in NaOH buffer solution. On the one hand, the disulfide exchange reaction between Van-DM NPs and the bacterial surface enhances vancomycin accumulation in bacteria, increasing the local concentration of vancomycin. On the other hand, the disulfide exchange reaction between Van-DM NPs and the mammalian cell membrane triggered the translocation of Van-DM NPs across the mammalian cell membrane into the cell cytosol. These dual mechanisms promote antibacterial activities of vancomycin against both extracellular and intracellular bacteria S. aureus. Furthermore, in an intravenous S. aureus infection mouse model, Van-DM NPs exhibited high antibacterial capability and efficiently reduced the bacterial load in liver and spleen, where intracellular bacteria tend to reside. Altogether, the reported Van-DM NPs would be highly promising against intracellular pathogenic infections.


Assuntos
Nanopartículas , Vancomicina , Animais , Camundongos , Vancomicina/farmacologia , Staphylococcus aureus , Dissulfetos , Antibacterianos/farmacologia , Bactérias , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...